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Research Needs 

Bridges deteriorate with time and use. The deterioration process is affected by several factors, 

such as structural materials, structural design and behavior, daily traffic, freeze and thaw cycles, 

climate, pollution, temperature variation1, 2, 3. After a certain period of time has elapsed, the 

deterioration processes accelerate and in a relatively short time interval the components can lose 

the capacity to carry the loads they were designed to support. 

To address this national issue, several US Acts4 mandate the state and local governmental 

agencies (including cities, state transportation agencies, etc.) to perform regular bridge 

inspections. These Acts define the requirements, periodicity, and procedures for such inspections 

in the US. Inspections are required to assess the extension, implications, and current state of 

deterioration processes that may exist, and they need to be performed at regular time intervals 

not longer than 2 years. A bridge report is generated after each inspection. All bridge reports 

collect and offer specific data about health of the inspected bridge, including sufficiency rating, 

condition rating, structure identification, year built, average daily traffic, and average daily truck 

traffic. For example, condition ratings (aka condition indexes) are quantitative descriptors of the 

state of structure parts that can be used in the assessment for the structures maintenance3, 4. By 

associating a deteriorated state to a number, instead of using qualitative description of the state, 
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much more flexibility can be achieved in monitoring groups of similar structures5-10. The 

adoption of condition ratings in the evaluation of structures allows consistency and uniformity, 

making it possible to compare structural performance, establish priorities, and also prevent 

failures and accidents. 

The aforementioned inspections across the nation, which have been conducted since 1970’s 

(including our region), have generated valuable historic databases of bridge data based in local 

and state governmental agencies. While these agencies currently use these inspections to prevent 

failure and to administrate the national bridge network by setting priorities and establishing 

criteria to allocate available resources to the structures in most critical conditions, we believe 

these databases are heavily underutilized. In particular, with the advent of machine learning and 

data mining methods, we envision data-driven solutions that can derive much more valued 

hidden knowledge that can be utilized for enhanced bridge management. 

While in the past, various data-driven deterioration models including Bayesian models, probit 

model, and Markov chains are proposed in the literature to model bridge deterioration 2, 3, 11-15, 

these models either suffer from low accuracy or are too complex to be applicable. Moreover, 

they only address the problem of deterioration forecasting. Recently deep learning (DL) is shown 

to significantly outperform other analytical modeling methodologies in a variety of application 

domains, such as computational biology, Electronic Health Record (EHR) data analysis, activity 

detection, scene labeling, image captioning, and object detection16-24. With our previous MPC 

project, building on our extensive experience in deploying DL in a variety of applications25-29, 

we have developed DL models for enhanced bridge management. In particular, we focused on 

the two problems of bridge subtyping (descriptive analysis) and bridge deterioration forecasting 

(predictive analysis). Our preliminary results show that DL based models for bridge subtyping 

and bridge deterioration can be used to effectively enhance bridge management. 

While our existing DL models are effective in bridge management, they solely rely on data, and 

unlike physics-based bridge models, cannot benefit from the vast knowledge and experience of 

bridge engineers encoded in existing physics-based models. As a result, accuracy and efficiency 

of these models are suboptimal. With this proposal, we intend to develop hybrid physics-based 

DL models that can benefit from both effectiveness of DL and the prior knowledge encoded in 

physics-based bridge models. Such hybrid models are expected to outperform the DL-only 

models in terms of accuracy and efficiency; hence, enabling further enhanced bridge 

management. We elaborate on our specific research objectives toward this end in the next 

section. 

Research Objectives 

Despite their general success in a variety of application areas (including bridge management, as 

we described above), the success of even the state-of-the-art black box DL models is limited due 

to their large data requirements, inability to produce physically consistent results, and their lack 

of generalizability to out of sample scenarios. Given that neither a DL-only nor a physics-based-

only modeling approach can be considered sufficient for complex engineering applications, the 

research community is beginning to explore the continuum between physics-based and DL 

models, where both engineering knowledge and data are integrated in a synergistic manner. This 

paradigm is fundamentally different from mainstream practices in the DL community for making 

use of domain specific knowledge, albeit in subservient roles, e.g., feature engineering or post-
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processing. In contrast to these practices that can only work with simpler forms of heuristics and 

constraints, this approach explores a deeper coupling of DL methods with engineering 

knowledge. 

With this proposal, we plan to build on our prior work in developing DL-only models for bridge 

management and introduce hybrid physics-based DL models with improved accuracy and 

efficiency, particularly for the bridge management task of bridge deterioration forecasting. 

Bridge deterioration forecasting models can be used to perform predictive analysis of the bridge 

performance by accurate prediction of quantitative descriptors for the structure deterioration state 

(e.g., condition ratings) as well as any possible anomalies in the deterioration pattern of the 

bridge structure. Accurate prediction of these descriptors and anomalies are not only crucial in 

establishing maintenance priorities and performing proactive bridge monitoring with optimized 

resource allocation, but also more importantly essential for failure prevention. 

We enumerate the specific objectives of our project as follows: 

1. Design hybrid physics-based DL models for bridge deterioration forecasting; 

2. Develop the designed hybrid physics-based DL models for bridge deterioration 

forecasting; 

3. Evaluate the developed hybrid physics-based DL models using National Bridge Inventory 

(NBI) datasets; 

4. Advance policy and practice with respect to bridge management by presenting the 

developed model to local and state governmental agencies (e.g., Colorado Department of 

Transportation, and City and County of Denver); 

5. Advance education through training students on the topic and results of our project; and 

6. Advance knowledge and build an evidence base by disseminating findings through 

publications and presentations. 

Research Methods 

Below, we will review our proposed methodology toward achieving the aforementioned 

objectives, where applicable. 

A. Methods for Design of Proposed Hybrid Physics-based Deep Learning Models for Bridge 

Deterioration Forecasting: As mentioned above, in the past we have introduced various DL-only 

models for bridge subtyping and bridge deterioration forecasting. To develop the proposed 

hybrid physics-based method we will explore two families of methods to extend the DL-only 

models to hybrid physics-based DL models as follows. 

1. Physics-Guided Learning 

Engineering problems such as bridge deterioration forecasting often exhibit a high degree of 

complexity due to relationships between many physical variables varying across space and 

time at different scales simultaneously. Standard DL models can fail to capture such 

relationships directly from data, especially when provided with limited observation data. This 

is one reason for their failure to generalize to scenarios not encountered in training data. In 
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the following, we discuss a number of ways researchers are beginning to incorporate physical 

knowledge into the learning process such that DL models can capture generalizable dynamic 

patterns consistent with established physical laws. 

1.1 Physics-based Loss to Improve Predictions 

One of the most common techniques to make DL models consistent with physical laws is to 

incorporate physical constraints into the loss function of DL models as follows30: 

 

where the training loss LossTRN measures a supervised error (e.g., RMSE or cross-entropy) 

between true labels Ytrue and predicted labels Ypred, and λ is a hyper-parameter to control the 

weight of model complexity loss R(W). These first two terms are the standard loss of DL 

models. The addition of physics-based loss LossPHY aims to ensure consistency with physical 

laws. An added benefit is that training can include unlabeled data by omitting LossTRN. 

1.2 Auxiliary Task in Multi-Task Learning 

Multi-task learning frameworks allow for multiple learning tasks to be solved at the same 

time, ideally while exploiting commonalities and differences across tasks. This can result in 

improved learning efficiency and predictions for one or more of the tasks. Therefore, another 

way to implement physics-based learning constraints is to use an auxiliary task in a multi-

task learning framework. This is shown to be successful in computer vision31, but a physics-

based analogue would be to have an auxiliary task representing consistency with physics-

based principles. In this paradigm, a task-constrained loss function can be formulated to 

allow errors of related tasks to be back-propagated jointly to improve model generalization. 

1.3 Physics-Guided Initialization 

Since many DL models require an initial choice of model parameters before training, 

researchers have explored different ways to physically inform a model starting state. Poor 

initialization can cause models to anchor in local minima, which is especially true for deep 

neural networks. Transfer learning can effectively tackle this issue, where the pre-trained 

models from a related task are fine-tuned with limited training data to fit the desired task. 

One way to harness physics-based modeling knowledge is to use the physics-based model’s 

simulated data to pre-train the DL model, which also alleviates data paucity issues. 

2. Physics-Guided Design of Architecture 

Although the physics-based loss in the previous section helps constrain the search space of 

neural networks during training, the neural network architecture is often still a black box. 

There are usually no architectural properties to implicitly encode physical consistency or 

other desired physical properties. A recent research direction has been to construct new 

physics-guided DL architectures. 

2.1 Intermediate Physical Variables 

One way to embed well-known physical principles into NN design is to ascribe physical 

meaning for certain neurons in the neural network by computing physically relevant 
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intermediate variables in the neural pathway from inputs to outputs. For example, in a lake 

temperature modeling study Daw et al.32 incorporate a physical intermediate variable in the 

LSTM architecture. This model produces physically consistent predictions in addition to 

appending a dropout layer to quantify uncertainty. Muralidhar et al.33, a similar approach is 

taken to insert physics-constrained variables as the intermediate variables in the 

convolutional neural network (CNN) architecture and achieve significant improvement over 

state-of-the-art physics-based models on the problem of predicting drag force on particle 

suspensions in moving fluids. 

An additional benefit of adding physically relevant intermediate variables in a DL 

architecture is that they can help extract physically meaningful hidden representation that can 

be interpreted by domain scientists. This is particularly valuable, as standard DL models are 

limited in their interpretability since they can only extract abstract hidden variables using 

highly complex connected structure. This is further exacerbated given the randomness 

involved in the optimization process. 

2.2 Encoding Invariances 

Common neural network design paradigms like the Recurrent Neural Network (RNN) and 

Convolutional Neural Network (CNN) have revolutionized the ability of DL algorithms by 

implicitly encoding time invariance into the RNN architecture and spatial translation, 

rotation, and scale invariance into the CNN. In the same way, engineering modeling tasks 

such as bridge modeling require other invariances based on physical laws. For example, in 

turbulence modeling and fluid dynamics, recent work defines a tensor basis neural network to 

embed the fundamental principle of rotational invariance into a neural network for improved 

prediction accuracy34. This solves a key problem in DL models for turbulence modeling 

because without rotational invariance, the model evaluated on identical flows with axes 

defined in other directions could yield different predictions. This work alters the neural 

network architecture by adding a higher-order multiplicative layer that ensures the prediction 

lies on a rotationally invariant tensor basis. 

2.3 Physics-Guided Neural Architecture Search 

Currently employed architectures primarily have been developed manually by human 

experts, which can be a time-consuming and error-prone process. Because of this, there is 

growing interest in automated neural architecture search methods35. A young but promising 

direction in DL architecture/model design is to embed prior physical knowledge into neural 

architecture searches. Ba et al.36 add physically meaningful input nodes and physical 

operations between nodes to the neural architecture search space for the search algorithm to 

discover more ideal physics-guided DL architectures. 

B. Software for Development of Proposed Tools: We will develop the proposed hybrid physics-

based DL models for bridge deterioration forecasting mainly using the open access TensorFlow 

deep network modeling platform from Google. TensorFlow is installed and available for use at 

PI’s research laboratory, Big Data Mining and Management Lab (BDLab), which is also 

equipped with a high efficiency cluster computing systems with GPU nodes. 
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C. Test Data for Evaluation of Proposed Tools: We plan to use the datasets stored and 

maintained at the National Bridge Inventory (NBI)1. As an example of typical NBI bridge 

inspection dataset, the City of County of Denver (CCD) dataset covers 208 bridges, each with at 

least 15 inspection reports, where each report offers 432 data points (116 unique data types) for 

static and dynamic features, most notably sufficiency rating (field 137), condition ratings (fields 

58, 59, and 60), structure identification (field 8), year built (field 27), average daily traffic (field 

29), and average daily truck traffic (field 109). 

D. Dissemination: Dissemination of results from this project will target both academic and 

practitioner audiences. To reach academic audiences, we will produce conference presentations 

and peer-reviewed conference and journal papers to share findings of this project. Yet, even the 

best transportation research is of little value until that knowledge is effectively shared with a 

broader audience. Accordingly, we will make sure that the results are adapted for practitioner 

audiences, particularly via popular press articles. Specifically, to encourage technology transfer, 

we will present a research seminar via the Transportation Learning Network. 

Expected Outcomes 

The expected outcomes of this work include: 

1. Novel hybrid physics-based deep learning models for bridge deterioration forecasting; 

these models will also likely inspire more research in this area that can generate physics-

based deep learning models for other bridge management tasks; 

2. Education materials on the topic of data-driven bridge management with a focus on 

physics-based deep learning models; 

3. Presentations to academic, practice, and policy audiences; 

4. Manuscripts for presentation/publication at TRB and other peer-reviewed journals 

reporting results of the project; and finally 

5. Periodic reports and final report of the project progress and results for MPC. 

In addition, our proposed physics-based deep learning models for bridge deterioration 

forecasting can be implemented as software tools. These software tools can be offered to 

governmental agencies for their daily use, potentially resulting in significant improvement in 

effective bridge deterioration forecasting at the regional and national levels. 

Relevance to Strategic Goals 

By improving resource allocation and capabilities for bridge maintenance and repair, the 

proposed research is well aligned with the following USDOT strategic goal: State of Good 

Repair (to ensure the U.S. proactively maintains critical transportation infrastructure in a state of 

good repair). A secondary USDOT strategic goal also addressed by this research project is 

Economic Competitiveness (to promote transportation policies and investments that bring lasting 

and equitable economic benefits to the Nation and its citizens); toward this end the proposed 

 

1 National Bridge Inventory: https://www.fhwa.dot.gov/bridge/nbi.cfm  

https://www.fhwa.dot.gov/bridge/nbi.cfm
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models can be used to evaluate bridge design choices based on the historic bridge inspection 

databases, and accordingly inform investments in building new bridges for higher cost-

efficiency. 

Educational Benefits 

The students involved in this project (one PhD student and one MS student) will be trained in 

conducting research related to the field of transportation, in particular bridge management. These 

students will gain valuable research experience and have the opportunity to author publications 

and presentations emanating from this work. 

The results of this study will be integrated into Drs. Banaei-Kashani’s and Rens’s graduate 

courses as case studies that will be presented to the students and also incorporated into their term 

projects. The data collected for this project will also be made available to students for use in term 

projects and/or master’s/PhD reports. As a result, this project will influence students from a 

variety of disciplines (in particular, transportation, civil engineering, and data science) that 

comprise our future transportation professionals. 

Technology Transfer 

As mentioned before, the results of this study will be presented in relevant courses offered by the 

PI and Co-PI, and disseminated through research publications and presentations. Moreover, we 

will present seminars in transportation practitioners’ groups, such as the Transportation Learning 

Network, to communicate our results to practitioners in addition to researchers. Finally, the PI 

and Co-PI will also leverage their existing partnerships with relevant federal and state agencies 

(namely, CDOT, CCD, and NREL) to explore technology transfer and policy impact 

opportunities based on the results of this study. For example, for years the City and County of 

Denver has partnered with the Department of Civil Engineering, University of Colorado Denver 

(i.e., the home department of the Co-PI Rens) to perform nearly all bridge inspections across 

CCD. We will leverage this and other existing partnerships to actively engage potential adopters 

of our proposed bridge management models for technology transfer. 

Work Plan 

The proposed scope of work is scheduled for a one-year timeframe, beginning with notice to 

proceed from the Mountain Plains Consortium. Major project objectives and milestones were 

described in previous sections. Here, we list the corresponding tasks and present the timeline to 

implement these tasks: 
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Task M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

Designing Hybrid 

Physics-based Deep 

Learning Models for 

Bridge Deterioration 

Forecasting 

X X X          

Developing Hybrid 

Physics-based Deep 

Learning Models for 

Bridge Deterioration 

Forecasting 

  X X X        

Evaluating Hybrid 

Physics-based Deep 

Learning Models for 

Bridge Deterioration 

Forecasting 

     X X X     

Incorporating lessons 

into graduate courses   X X X X X X X X   

Advancing Policy, 

Practice and Research 

by Dissemination / 

Technology Transfer 

       X X X X X 

Project Cost 

Total Project Costs: $120,000 

MPC Funds Requested: $ 60,000 

Matching Funds: $ 60,000 

Source of Matching Funds: University of Colorado Denver, in-kind support 
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